Tools for Data Science

What are some of the most popular data science tools, how do you use them, and what are their features? In this course, you’ll learn about Jupyter Notebooks, JupyterLab, RStudio IDE, Git, GitHub, and Watson Studio. You will learn about what each tool is used for, what programming languages they can execute, their features and limitations. With the tools hosted in the cloud on Skills Network Labs, you will be able to test each tool and follow instructions to run simple code in Python, R or Scala. To end the course, you will create a final project with a Jupyter Notebook on IBM Watson Studio and demonstrate your proficiency preparing a notebook, writing Markdown, and sharing your work with your peers.

Data Scientist’s Toolkit

In this module, you will get an overview of the programming languages commonly used, including Python, R, Scala, and SQL. You’ll be introduced to the open source and commercial data science tools available. You’ll also learn about the packages, APIs, data sets and models frequently used by data scientists.

Open Source Tools

In this module, you will learn about three popular tools used in data science: GitHub, Jupyter Notebooks, and RStudio IDE. You will become familiar with the features of each tool, and what makes these tools so popular among data scientists today.

IBM Tools for Data Science

In this module, you will learn about an enterprise-ready data science platform by IBM, called Watson Studio. You’ll learn about some of the features and capabilities of what data scientists use in the industry. You’ll also learn about other IBM tools used to support data science projects, such as IBM Watson Knowledge Catalog, Data Refinery, and the SPSS Modeler.

Final Assignment: Create and Share Your Jupyter Notebook

In this module, you will demonstrate your skills by creating and configuring a Jupyter Notebook. As part of your grade for this course, you will share your Jupyter Notebook with your peers for review.


Aije Egwaikhide
Senior Data Scientist
IBM


Svetlana Levitan
Senior Developer Advocate with IBM Center for Open Data and AI Technologies at IBM


Romeo Kienzler
Chief Data Scientist, Course Lead
IBM